论文标题
迈向实时6D姿势估算单视锥束X射线中的对象
Towards real-time 6D pose estimation of objects in single-view cone-beam X-ray
论文作者
论文摘要
基于深度学习的姿势估计算法可以成功估算图像中对象的姿势,尤其是在颜色图像领域。基于X射线图像的深度学习模型的6D对象构成估计,通常使用自定义体系结构,这些体系结构使用广泛的CAD模型和模拟数据来培训。最近基于RGB的方法选择使用小数据集解决构成估计问题,这使得它们对几乎无法获得医疗数据的X射线域更具吸引力。我们通过创建仅根据真实X射线数据训练并针对X射线采集几何来调整的通用解决方案,从而完善现有的基于RGB的模型(单打),以估算灰度X射线图像的6D姿势。该模型使用透视-N点(PNP)回归2D控制点并通过2D/3D对应关系来计算姿势,从而允许在所有基于锥形的X射线X射线几何形状上使用一个训练有素的模型。由于现代X射线系统在过程中不断调整采集参数,因此,这样的姿势估计网络必须考虑这些参数以成功部署并找到真实用例,这一点至关重要。拟议方法的5厘米/5度精度为93%,平均3D旋转误差为2.2度,该方法的结果与最先进的替代方案相当,同时需要更少的实际培训示例,并且适用于实时应用。
Deep learning-based pose estimation algorithms can successfully estimate the pose of objects in an image, especially in the field of color images. 6D Object pose estimation based on deep learning models for X-ray images often use custom architectures that employ extensive CAD models and simulated data for training purposes. Recent RGB-based methods opt to solve pose estimation problems using small datasets, making them more attractive for the X-ray domain where medical data is scarcely available. We refine an existing RGB-based model (SingleShotPose) to estimate the 6D pose of a marked cube from grayscale X-ray images by creating a generic solution trained on only real X-ray data and adjusted for X-ray acquisition geometry. The model regresses 2D control points and calculates the pose through 2D/3D correspondences using Perspective-n-Point(PnP), allowing a single trained model to be used across all supporting cone-beam-based X-ray geometries. Since modern X-ray systems continuously adjust acquisition parameters during a procedure, it is essential for such a pose estimation network to consider these parameters in order to be deployed successfully and find a real use case. With a 5-cm/5-degree accuracy of 93% and an average 3D rotation error of 2.2 degrees, the results of the proposed approach are comparable with state-of-the-art alternatives, while requiring significantly less real training examples and being applicable in real-time applications.