论文标题

HFEDMS:具有令人难忘的数据语义的异构联合学习

HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics in Industrial Metaverse

论文作者

Zeng, Shenglai, Li, Zonghang, Yu, Hongfang, Zhang, Zhihao, Luo, Long, Li, Bo, Niyato, Dusit

论文摘要

联合学习(FL)是一种迅速发展的隐私协作机器学习范式,是在新兴工业元元中实现Edge Intelligence的一种有前途的方法。尽管许多成功的用例证明了FL在理论上的可行性,但在元元的工业实践中,非独立和分布的数据(非I.I.I.D.)的数据,流媒体工业数据引起的学习忘记以及稀缺的通信带宽仍然是实现实用的FLS。本文同时面对以上三个挑战,提出了一个名为HFEDMS的高性能和高效系统,该系统将实用的FL纳入工业元元。 HFEDMS通过动态分组和训练模式转换(动态顺序训练,STP)来降低数据异质性。然后,它通过融合压缩历史数据语义并校准分类器参数(语义压缩和补偿,SCC)来弥补被遗忘的知识。最后,特征提取器和分类器的网络参数以不同的频率(层 - 智能同步协议,LASP)同步,以降低通信成本。这些技术使FL更适合于工业设备连续生成的异质流数据,并且在通信方面也比传统方法更有效(例如,联合平均值)。在流的非I.I.D上进行了广泛的实验。女性主义数据集使用368个模拟设备。数值结果表明,与8个基准相比,HFEDMS提高了至少6.4%的分类准确性,并将整体运行时和转移字节节省高达98%,证明了其在精度和效率方面的优势。

Federated Learning (FL), as a rapidly evolving privacy-preserving collaborative machine learning paradigm, is a promising approach to enable edge intelligence in the emerging Industrial Metaverse. Even though many successful use cases have proved the feasibility of FL in theory, in the industrial practice of Metaverse, the problems of non-independent and identically distributed (non-i.i.d.) data, learning forgetting caused by streaming industrial data, and scarce communication bandwidth remain key barriers to realize practical FL. Facing the above three challenges simultaneously, this paper presents a high-performance and efficient system named HFEDMS for incorporating practical FL into Industrial Metaverse. HFEDMS reduces data heterogeneity through dynamic grouping and training mode conversion (Dynamic Sequential-to-Parallel Training, STP). Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics and calibrates classifier parameters (Semantic Compression and Compensation, SCC). Finally, the network parameters of the feature extractor and classifier are synchronized in different frequencies (Layer-wiseAlternative Synchronization Protocol, LASP) to reduce communication costs. These techniques make FL more adaptable to the heterogeneous streaming data continuously generated by industrial equipment, and are also more efficient in communication than traditional methods (e.g., Federated Averaging). Extensive experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices. Numerical results show that HFEDMS improves the classification accuracy by at least 6.4% compared with 8 benchmarks and saves both the overall runtime and transfer bytes by up to 98%, proving its superiority in precision and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源