论文标题

具有可调的内旋结构和自旋磁化产生的光学控制的单谷激发型双打状态

Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation

论文作者

Ruan, Jiawei, Li, Zhenglu, Ong, Chin Shen, Louie, Steven G.

论文摘要

在二维(2D)材料研究中,通过轻度互动来操纵量子状态。在半导体单层过渡 - 金属二色元(TMD)中,基于从其对等空间中的两个不同山谷的双重变性激子,在半导体单层过渡金属元素元素(TMD)中取得了重大进展。在这里,我们介绍了一种新型的具有光学控制的双重变性激子状态,该状态来自单个山谷,被称为单瓦利激情dubitt(SVXD)状态。它们的独特之处在于它们的组成孔源自同一价带,使激发组成电子的自旋结构的直接光控制可能。结合了Ab Intio GW Plus Bethe-Salpeter方程(GW-BSE)的计算和新开发的理论分析方法,我们证明了这种新型SVXD在底物支持的单层bismuthene中 - 使用分子束相互观察成功地生长。在布里渊区的两个不同山谷中的每个山谷中,强的自旋轨道耦合和$ c_ {3v} $对称性导致一对脱位1S exciton状态(SVXD状态),具有相反的旋转配置。单个山谷中SVXD的任何相干线性组合都可以通过特定的极化来激发光线,从而可以完全操纵其内部自旋构型。特别是,可以通过光激发产生可控的净自旋磁化。我们的发现开放了控制量子自由度的新途径,为Spintronics和量子信息科学的应用铺平了道路。

Manipulating quantum states through light-matter interactions has been actively pursued in two-dimensional (2D) materials research. Significant progress has been made towards the optical control of the valley degrees of freedom in semiconducting monolayer transition-metal dichalcogenides (TMD), based on doubly degenerate excitons from their two distinct valleys in reciprocal space. Here, we introduce a novel kind of optically controllable doubly degenerate exciton states that come from a single valley, dubbed as single-valley exciton doublet (SVXD) states. They are unique in that their constituent holes originate from the same valence band, making possible the direct optical control of the spin structure of the excited constituent electrons. Combining ab initio GW plus Bethe-Salpeter equation (GW-BSE) calculations and a newly developed theoretical analysis method, we demonstrate such novel SVXD in substrate-supported monolayer bismuthene -- which has been successfully grown using molecular beam epitaxy. In each of the two distinct valleys in the Brillouin zone, strong spin-orbit coupling and $C_{3v}$ symmetry lead to a pair of degenerate 1s exciton states (the SVXD states) with opposite spin configurations. Any coherent linear combinations of the SVXD in a single valley can be excited by light with a specific polarization, enabling full manipulation of their internal spin configurations. In particular, a controllable net spin magnetization can be generated through light excitation. Our findings open new routes to control quantum degrees of freedom, paving the way for applications in spintronics and quantum information science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源