论文标题
liouville的刚度和超支竖琴估计的各向异性缓慢扩散
Liouville rigidity and time-extrinsic Harnack estimates for an anisotropic slow diffusion
论文作者
论文摘要
我们证明,完全各向异性原型演化方程满足有限的传播速度的条件,并且它们都是单方面的界限,并且在单个时间级上在空间中界定,它们对完全各向异性原型演化方程式的非阴性解决方案是恒定的。当在单个空间点给出界限时,类似的陈述是有效的。作为一般范式,Hölder估计为刚性提供了基础。最后,我们表明,最近的内在Harnack估计值可以改进到有效的非人性时代的Harnack不平等现象。在当地,它们是等效的。
We prove that ancient non-negative solutions to a fully anisotropic prototype evolution equation are constant if they satisfy a condition of finite speed of propagation and if they are both one-sided bounded, and bounded in space at a single time level. A similar statement is valid when the bound is given at a single space point. As a general paradigm, Hölder estimates provide the basics for rigidity. Finally, we show that recent intrinsic Harnack estimates can be improved to a Harnack inequality valid for non-intrinsic times. Locally, they are equivalent.