论文标题

多项式内核,用于广义统治问题

Polynomial Kernels for Generalized Domination Problems

论文作者

Ashok, Pradeesha, Rao, Rajath, Tomar, Avi

论文摘要

在本文中,我们研究了称为[$σ,ρ$]主导设置问题的广义支配问题的参数化复杂性。这个问题概括了许多问题,包括最低占主导地位的问题及其许多变体。对[$σ,ρ$]的参数化复杂性主导着由树宽参数化的集合问题。在这里,确定了使问题处理的集合$σ$和$ρ$的属性[1]。我们考虑较大的参数并研究多项式大小的内核的存在。当$σ$和$ρ$有限时,我们确定[$σ,ρ$]主导设置问题参数为coartion coper的确切条件。我们的下限和上限结果也可以扩展到更一般的条件,也可以扩展到更小的参数。

In this paper, we study the parameterized complexity of a generalized domination problem called the [$σ, ρ$] Dominating Set problem. This problem generalizes a large number of problems including the Minimum Dominating Set problem and its many variants. The parameterized complexity of the [$σ, ρ$] Dominating Set problem parameterized by treewidth is well studied. Here the properties of the sets $σ$ and $ρ$ that make the problem tractable are identified [1]. We consider a larger parameter and investigate the existence of polynomial sized kernels. When $σ$ and $ρ$ are finite, we identify the exact condition when the [$σ, ρ$] Dominating Set problem parameterized by vertex cover admits polynomial kernels. Our lower and upper bound results can also be extended to more general conditions and provably smaller parameters as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源