论文标题

通过项目语义聚类进行跨域建议的偏见传输学习

Debiasing Graph Transfer Learning via Item Semantic Clustering for Cross-Domain Recommendations

论文作者

Li, Zhi, Amagata, Daichi, Zhang, Yihong, Hara, Takahiro, Haruta, Shuichiro, Yonekawa, Kei, Kurokawa, Mori

论文摘要

基于深度学习的建议系统在缺乏培训互动数据时可能会导致过度合适。这种过度拟合会大大降低建议性能。为了解决此数据稀疏问题,跨域推荐系统(CDRSS)从辅助源域中利用数据来促进稀疏目标域的建议。大多数现有的CDRS都依靠重叠的用户或项目来连接域和传输知识。但是,匹配用户是一项艰巨的任务,当数据来自不同的公司时,可能涉及隐私问题,从而导致上述CDRS的应用程序有限。一些研究通过传输学习的用户互动模式来开发不需要重叠用户和项目的CDRS。但是,与单域推荐系统相比,它们忽略了域和域之间用户交互模式的偏见。在本文中,基于上述发现,我们提出了一种新颖的CDR,即语义群集增强的demiasing图形神经推荐系统(SCDGN),该系统不需要重叠的用户和项目,并且可以处理域偏置。更确切地说,SCDGN在语义上簇从两个域中的项目群,并构造了从项目簇和用户生成的跨域二分图。然后,通过此跨域用户群集图将知识从源到目标传输。此外,我们为SCDGN设计了一个偏见的图形卷积层,以从跨域用户群集图中提取无偏的结构知识。我们对三个公共数据集和一对专有数据集的实验结果验证了SCDGN在跨域建议方面对最先进模型的有效性。

Deep learning-based recommender systems may lead to over-fitting when lacking training interaction data. This over-fitting significantly degrades recommendation performances. To address this data sparsity problem, cross-domain recommender systems (CDRSs) exploit the data from an auxiliary source domain to facilitate the recommendation on the sparse target domain. Most existing CDRSs rely on overlapping users or items to connect domains and transfer knowledge. However, matching users is an arduous task and may involve privacy issues when data comes from different companies, resulting in a limited application for the above CDRSs. Some studies develop CDRSs that require no overlapping users and items by transferring learned user interaction patterns. However, they ignore the bias in user interaction patterns between domains and hence suffer from an inferior performance compared with single-domain recommender systems. In this paper, based on the above findings, we propose a novel CDRS, namely semantic clustering enhanced debiasing graph neural recommender system (SCDGN), that requires no overlapping users and items and can handle the domain bias. More precisely, SCDGN semantically clusters items from both domains and constructs a cross-domain bipartite graph generated from item clusters and users. Then, the knowledge is transferred via this cross-domain user-cluster graph from the source to the target. Furthermore, we design a debiasing graph convolutional layer for SCDGN to extract unbiased structural knowledge from the cross-domain user-cluster graph. Our Experimental results on three public datasets and a pair of proprietary datasets verify the effectiveness of SCDGN over state-of-the-art models in terms of cross-domain recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源