论文标题

我们可以准确计算多组分金属熔体中的粘度吗?

Can we accurately calculate viscosity in multicomponent metallic melts?

论文作者

Kondratyuk, Nikolay, Ryltsev, Roman, Ankudinov, Vladimir, Chtchelkatchev, Nikolay

论文摘要

对于经典和\ textit {ab〜 initio}分子动力学仿真方法,计算多综合金属熔体中的粘度是一项具有挑战性的任务。前者可能不会提供足够的准确性,而后者的资源过于要求。机器学习潜力提供了准确性和计算效率之间的最佳平衡,因此解决此问题似乎非常有希望。在这里,我们解决了使用DEEPMD-KIT中实现的深神经网络电位(DP)的三元al-Cu-Ni融化中的运动粘度。我们计算了al-Cu-Ni中运动粘度的浓度和温度依赖性,并得出结论,开发的电位使人们可以高精度模拟粘度。与实验数据的偏差不超过9 \%,并且接近实验数据的不确定性间隔。更重要的是,我们的模拟对粘度在共晶点的浓度依赖性的最低限度再现。因此,我们得出的结论是,基于DP的MD模拟是计算多组分金属熔体粘度的高度有希望的方法。

Calculating viscosity in multicompoinent metallic melts is a challenging task for both classical and \textit{ab~initio} molecular dynamics simulations methods. The former may not to provide enough accuracy and the latter is too resources demanding. Machine learning potentials provide optimal balance between accuracy and computational efficiency and so seem very promising to solve this problem. Here we address simulating kinematic viscosity in ternary Al-Cu-Ni melts with using deep neural network potentials (DP) as implemented in the DeePMD-kit. We calculate both concentration and temperature dependencies of kinematic viscosity in Al-Cu-Ni and conclude that the developed potential allows one to simulate viscosity with high accuracy; the deviation from experimental data does not exceed 9\% and is close to the uncertainty interval of experimental data. More importantly, our simulations reproduce minimum on concentration dependency of the viscosity at the eutectic point. Thus, we conclude that DP-based MD simulations is highly promising way to calculate viscosity in multicomponent metallic melts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源