论文标题

随机动力学系统中具有隐私性的异常检测:最佳高斯机制的合成

Privacy-Preserving Anomaly Detection in Stochastic Dynamical Systems: Synthesis of Optimal Gaussian Mechanisms

论文作者

Hayati, Haleh, Murguia, Carlos, van de Wouw, Nathan

论文摘要

我们提出了一个框架,用于设计扭曲机制,该机制允许在保留隐私的同时远程操作异常检测器。我们考虑远程站寻求使用系统输入输出信号识别异常的问题设置,该信号通过通信网络传输。但是,不需要披露系统操作的真实数据,因为它可以用于推断私人信息 - 在此建模为系统私人输出。为了防止对手对私人产出的准确估算,我们通过扭曲(隐私)机制传递原始信号,并将扭曲的数据发送到远程站(这不可避免地导致监视性能退化)。我们将这些机制的设计作为隐私 - 实用性权衡问题。我们将依赖性高斯机制的合成作为凸面程序的解决方案,在该解决方案中,我们试图在有限的实现窗口上使用信息理论指标(相互信息和差异熵)量化隐私,同时保证监控性能降级。

We present a framework for designing distorting mechanisms that allow remotely operating anomaly detectors while preserving privacy. We consider the problem setting in which a remote station seeks to identify anomalies using system input-output signals transmitted over communication networks. However, disclosing true data of the system operation is not desired as it can be used to infer private information -- modeled here as a system private output. To prevent accurate estimation of private outputs by adversaries, we pass original signals through distorting (privacy-preserving) mechanisms and send the distorted data to the remote station (which inevitably leads to degraded monitoring performance). We formulate the design of these mechanisms as a privacy-utility trade-off problem. We cast the synthesis of dependent Gaussian mechanisms as the solution of a convex program where we seek to maximize privacy quantified using information-theoretic metrics (mutual information and differential entropy) over a finite window of realizations while guaranteeing a bound on monitoring performance degradation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源