论文标题
多项式复合物Ginzburg-Landau方程几乎是周期性的
Polynomial Complex Ginzburg-Landau equations in almost periodic spaces
论文作者
论文摘要
我们认为,在实际线路中具有多项式非线性的复杂的金茨堡 - 兰道方程。我们使用分裂方法来证明几乎是周期性空间的子集的适合度。具体而言,我们证明,如果初始条件具有非理性阶段的倍数,则方程的解会保持相同的阶段。
We consider Complex Ginzburg-Landau equations with a polynomial nonlinearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases.