论文标题

蒙特卡洛技术,用于解决基于模拟的推理中的大错误和缺少数据

Monte Carlo Techniques for Addressing Large Errors and Missing Data in Simulation-based Inference

论文作者

Wang, Bingjie, Leja, Joel, Villar, Ashley, Speagle, Joshua S.

论文摘要

即将进行的天文学调查将在宇宙时间内观察数十亿个星系,这为将银河集会的许多途径绘制到令人难以置信的高分辨率提供了独特的机会。但是,大量数据也带来了直接的计算挑战:从星系之光推断参数的当前工具,每次拟合10美元。这非常昂贵。基于仿真的推理(SBI)是一个有前途的解决方案。但是,它需要模拟数据与观察到的数据相同的特征,而实际的天文调查通常是高度异质性的,缺少观察结果和由天空和望远镜条件确定的可变不确定性。在这里,我们提出了一种蒙特卡洛技术,用于治疗使用标准SBI工具的分布外测量错误和缺少数据。我们表明,可以使用标准的SBI评估来近似分发测量误差,并且可以使用SBI评估对训练集中的附​​近数据实现进行边缘化数据。尽管这些技术将推理过程从$ \ sim 1 $ sec降低到每个对象的$ \ sim 1.5 $ 1.5 $,但这仍然比标准方法快得多,同时也大大扩展了SBI的适用性。这种扩展的政权对未来对天文学调查的应用具有广泛的影响。

Upcoming astronomical surveys will observe billions of galaxies across cosmic time, providing a unique opportunity to map the many pathways of galaxy assembly to an incredibly high resolution. However, the huge amount of data also poses an immediate computational challenge: current tools for inferring parameters from the light of galaxies take $\gtrsim 10$ hours per fit. This is prohibitively expensive. Simulation-based Inference (SBI) is a promising solution. However, it requires simulated data with identical characteristics to the observed data, whereas real astronomical surveys are often highly heterogeneous, with missing observations and variable uncertainties determined by sky and telescope conditions. Here we present a Monte Carlo technique for treating out-of-distribution measurement errors and missing data using standard SBI tools. We show that out-of-distribution measurement errors can be approximated by using standard SBI evaluations, and that missing data can be marginalized over using SBI evaluations over nearby data realizations in the training set. While these techniques slow the inference process from $\sim 1$ sec to $\sim 1.5$ min per object, this is still significantly faster than standard approaches while also dramatically expanding the applicability of SBI. This expanded regime has broad implications for future applications to astronomical surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源