论文标题

连续比logits模型的结构化混合物用于顺序回归

Structured Mixture of Continuation-ratio Logits Models for Ordinal Regression

论文作者

Kang, Jizhou, Kottas, Athanasios

论文摘要

我们基于直接放置在序响应的离散分布的先验基础上,开发了一种非参数贝叶斯建模方法,以实现序数回归。先前的概率模型是由多项式分布的结构化混合物构建的。我们利用持续比率的逻辑表示形式来制定混合物内核,并通过logit摇杆的破坏过程定义了混合物,该过程通过线性函数结合了协变量。响应概率的隐含回归函数可以表示为参数回归函数的加权总和,具有协变量依赖性权重。因此,建模方法实现了柔性的序数回归关系,避免了协变量效应中的线性或添加性假设。通过先前概率模型的Kullback-Leibler支持正式探索模型灵活性。一个关键的模型特征是,混合物内核和混合物权重的参数都可以与持续比率逻辑回归结构相关联。因此,可以使用Pólya-Gamma数据增强来设计一种有效且相对易于实现的后仿真方法。此外,该模型是由针对特定类别参数的条件独立性结构构建的,该结构通过部分并行采样导致更多的计算效率提高。除了一般的混合结构外,我们还研究了仅在混合物核参数中或仅在混合物重量中包含协变量依赖性的简化模型版本。对于所有提出的模型,我们讨论了先前规范的方法,并开发了马尔可夫链蒙特卡洛方法进行后仿真。该方法用几个合成和真实的数据示例进行了说明。

We develop a nonparametric Bayesian modeling approach to ordinal regression based on priors placed directly on the discrete distribution of the ordinal responses. The prior probability models are built from a structured mixture of multinomial distributions. We leverage a continuation-ratio logits representation to formulate the mixture kernel, with mixture weights defined through the logit stick-breaking process that incorporates the covariates through a linear function. The implied regression functions for the response probabilities can be expressed as weighted sums of parametric regression functions, with covariate-dependent weights. Thus, the modeling approach achieves flexible ordinal regression relationships, avoiding linearity or additivity assumptions in the covariate effects. Model flexibility is formally explored through the Kullback-Leibler support of the prior probability model. A key model feature is that the parameters for both the mixture kernel and the mixture weights can be associated with a continuation-ratio logits regression structure. Hence, an efficient and relatively easy to implement posterior simulation method can be designed, using Pólya-Gamma data augmentation. Moreover, the model is built from a conditional independence structure for category-specific parameters, which results in additional computational efficiency gains through partial parallel sampling. In addition to the general mixture structure, we study simplified model versions that incorporate covariate dependence only in the mixture kernel parameters or only in the mixture weights. For all proposed models, we discuss approaches to prior specification and develop Markov chain Monte Carlo methods for posterior simulation. The methodology is illustrated with several synthetic and real data examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源