论文标题
部分可观测时空混沌系统的无模型预测
Optimal exercise of American options under time-dependent Ornstein-Uhlenbeck processes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the barrier that gives the optimal time to exercise an American option written on a time-dependent Ornstein--Uhlenbeck process, a diffusion often adopted by practitioners to model commodity prices and interest rates. By framing the optimal exercise of the American option as a problem of optimal stopping and relying on probabilistic arguments, we provide a non-linear Volterra-type integral equation characterizing the exercise boundary, develop a novel comparison argument to derive upper and lower bounds for such a boundary, and prove its Lipschitz continuity in any closed interval that excludes the expiration date and, thus, its differentiability almost everywhere. We implement a Picard iteration algorithm to solve the Volterra integral equation and show illustrative examples that shed light on the boundary's dependence on the process's drift and volatility.