论文标题
部分可观测时空混沌系统的无模型预测
Simulation-Based Parallel Training
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Numerical simulations are ubiquitous in science and engineering. Machine learning for science investigates how artificial neural architectures can learn from these simulations to speed up scientific discovery and engineering processes. Most of these architectures are trained in a supervised manner. They require tremendous amounts of data from simulations that are slow to generate and memory greedy. In this article, we present our ongoing work to design a training framework that alleviates those bottlenecks. It generates data in parallel with the training process. Such simultaneity induces a bias in the data available during the training. We present a strategy to mitigate this bias with a memory buffer. We test our framework on the multi-parametric Lorenz's attractor. We show the benefit of our framework compared to offline training and the success of our data bias mitigation strategy to capture the complex chaotic dynamics of the system.