论文标题
多项式增长的自由循环基团的扭转同源性生长
Torsion homology growth of polynomially growing free-by-cyclic groups
论文作者
论文摘要
我们表明,自由循环群的同源性扭转具有多项式生长的单构型在每个维度上都消失的,而与Farber链的选择无关。因此,积分扭转$ρ^\ mathbb {z} $等于$ \ ell^2 $ -torsion $ρ^{(2)} $验证这些组的lück的猜想。
We show that the homology torsion growth of a free-by-cyclic group with polynomially growing monodromy vanishes in every dimension independently of the choice of Farber chain. It follows that the integral torsion $ρ^\mathbb{Z}$ equals the $\ell^2$-torsion $ρ^{(2)}$ verifying a conjecture of Lück for these groups.