论文标题

广告中的自我结合能量

Self-Binding Energies in AdS

论文作者

Andriolo, Stefano, Michel, Marco, Palti, Eran

论文摘要

阳性结合猜想是适合抗De-sitter(ADS)空间的弱重力猜想的提出的公式。它提出,在具有$ u(1)$量规对称性的一致引力理论中,必须存在一个带有非负性自结合能的带电粒子。为了将其作为对给定有效理论的约束,我们计算ADS $ _4 $和ADS $ _5 $中带电粒子的自结合能量。特别是,我们允许它融入任意质量的附加标量字段。与扁平空间的情况不同,即使标量场庞大,它也会显着贡献结合能,因此是猜想的重要组成部分。在ADS $ _5 $中,我们为标量场无质量的情况以及Breitenlohner-Freedman(BF)绑定的情况提供了分析性表达式,并在ADS $ _4 $中饱和。我们表明,无质量的情况在较大的ADS半径限制中重现了扁平空间表达式,并且两种分析案例都会导致在示例超对称模型中为BPS颗粒的总自约束能量消失。对于标量的其他质量,我们给出了数值表达式对自我结合能量的贡献。

The Positive Binding Conjecture is a proposed formulation of the Weak Gravity Conjecture appropriate to Anti de-Sitter (AdS) space. It proposes that in a consistent gravitational theory, with a $U(1)$ gauge symmetry, there must exist a charged particle with non-negative self-binding energy. In order to formulate this as a constraint on a given effective theory, we calculate the self-binding energy for a charged particle in AdS$_4$ and AdS$_5$. In particular, we allow it to couple to an additional scalar field of arbitrary mass. Unlike the flat-space case, even when the scalar field is massive it contributes significantly to the binding energy, and therefore is an essential component of the conjecture. In AdS$_5$, we give analytic expressions for the self-binding energy for the cases when the scalar field is massless and when it saturates the Breitenlohner-Freedman (BF) bound, and in AdS$_4$ when it is massless. We show that the massless case reproduces the flat-space expressions in the large AdS radius limit, and that both analytic cases lead to vanishing total self-binding energy for BPS particles in example supersymmetric models. For other masses of the scalar we give numerical expressions for its contribution to the self-binding energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源