论文标题

通过无限循环的可区分量子编程

Differentiable Quantum Programming with Unbounded Loops

论文作者

Fang, Wang, Ying, Mingsheng, Wu, Xiaodi

论文摘要

变异量子应用的出现导致量子计算中自动分化技术的发展。最近,朱等人。 (PLDI 2020)已通过有界环制定了可区分的量子编程,为训练量子变异应用提供了可扩展梯度计算的框架。但是,由于无界环的自然参与,因此在现有框架中无法在现有框架中训练有希望的参数化量子应用,例如量子步行和统一实现。为了填补空白,我们提供了第一个具有无限循环的可区分量子编程框架,包括新设计的差异规则,代码转换及其正确性证明。从技术上讲,我们引入了一个随机估计量,以处理无限环的分化中的无限总和,该循环的分化也是在经典和概率编程中的适用性。我们使用Python和Q#实施我们的框架,并展示了合理的样本效率。通过广泛的案例研究,我们在自动识别几种参数化量子应用程序的近距离参数时展示了我们框架的令人兴奋的应用。

The emergence of variational quantum applications has led to the development of automatic differentiation techniques in quantum computing. Recently, Zhu et al. (PLDI 2020) have formulated differentiable quantum programming with bounded loops, providing a framework for scalable gradient calculation by quantum means for training quantum variational applications. However, promising parameterized quantum applications, e.g., quantum walk and unitary implementation, cannot be trained in the existing framework due to the natural involvement of unbounded loops. To fill in the gap, we provide the first differentiable quantum programming framework with unbounded loops, including a newly designed differentiation rule, code transformation, and their correctness proof. Technically, we introduce a randomized estimator for derivatives to deal with the infinite sum in the differentiation of unbounded loops, whose applicability in classical and probabilistic programming is also discussed. We implement our framework with Python and Q#, and demonstrate a reasonable sample efficiency. Through extensive case studies, we showcase an exciting application of our framework in automatically identifying close-to-optimal parameters for several parameterized quantum applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源