论文标题

用于流体粒子流中湍流调制的广义K- EPSILON模型

A generalized k-epsilon model for turbulence modulation in fluid-particle flows

论文作者

Skartlien, Roar, Palmer, Teresa Lynne, Skjæraasen, Olaf

论文摘要

大量已发表的数据表明,直径高于湍流积分长度尺度($ d/l> 0.1 $)的颗粒倾向于将载流液的湍流动能增加到单相值以上,而较小的颗粒往往会抑制它。开发了$ K-ε$类型的修订现象学模型,以对小颗粒的无湍流调制的正确渐近极限再现这些效果,并增加了较大直径固体的增强。粒子运动理论用于得出由于阻力和增加的质量力而引起的颗粒和流体之间交换的工作,以适应包括气泡,液滴和重固体在内的任何粒子/流体密度比率。对于较大的颗粒,我们设计了一个新模型,用于由于粒子惯性而引起的颗粒和湍流之间的滑动引起的涡流脱落。通过渐近分析获得了湍流调制的简单近似公式。 固体颗粒的总体效果是,大直径固体的增强是由于涡流脱落而引起的,小直径的湍流抑制是主要是由于湍流阻力力和额外的液体耗散。对于$ d/l = 0.1 $,从抑制到增强的过渡是广泛的粒子雷诺和斯托克斯数字的强大特征,但我们无法证明这是理论上的一般关系。实际上,由于防止破裂所需的中等湍流水平,气泡和液滴可能根本不会显示出较大直径的湍流增强,因此颗粒和流体之间的速度差异可能太低,以至于涡流脱落以至于无法发生。在模型的基础上,我们发现垂直气流中固体的某些数据显示出非常大的湍流增大,这只能是由于重力沉降。

A large amount of published data show that particles with diameter above 10\% of the turbulence integral length scale ($D/l >0.1$) tend to increase the turbulent kinetic energy of the carrier fluid above the single-phase value, and smaller particles tend to suppress it. A revised phenomenological model of the $k-ε$ type was developed to reproduce these effects with the correct asymptotic limit of no turbulence modulation for small particles, and augmentation for larger diameter solids. Particle-kinetic theory was used to derive the work exchanged between the particles and the fluid due to both drag and added mass forces to accommodate any particle/fluid density ratios including bubbles, droplets and heavy solids. For the larger particles, we devised a new model for vortex shedding induced by the slip between the particles and the turbulent flow, due to particle inertia. Simple approximate formulae for the turbulence modulation were obtained through asymptotic analysis. The overall effect for solid particles is that augmentation for large diameter solids is due to vortex shedding, and turbulence suppression for small diameters is due to mainly to turbulent drag forces and extra fluid dissipation. The transition from suppression to augmentation around $D/l = 0.1$ is a robust feature for a wide range of particle Reynolds and Stokes numbers, but we could not prove this to be a general relation on a theoretical basis. Indeed, bubbles and droplets may not display turbulence augmentation at all for the larger diameters due to moderate turbulence levels needed to prevent breakup, and the velocity difference between particles and fluid may therefore be too low for vortex shedding to occur. On the basis of the model we find that some data for solids in vertical gas flow show very large turbulence augmentation that can only be due to gravitational settling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源