论文标题

通过数据增强来提取惯性限制融合图像

Contour Extraction of Inertial Confinement Fusion Images By Data Augmentation

论文作者

Falato, Michael, Wolfe, Bradley, Nguyen, Nga, Zhang, Xinhua, Wang, Zhehui

论文摘要

X射线X光片是惯性限制融合(ICF)实验的主要结果之一。诸如实验数据稀缺,数据中的高噪声,缺乏地面真相数据以及数据的低分辨率等问题限制了用于自动化射线照片的机器/深度学习的使用。在这项工作中,我们通过创建一个类似于实验性X光片的合成X光片数据集来将这些障碍与机器学习的使用作斗争。伴随每个合成X线照片是每个胶囊壳形状的相应轮廓,这使神经网络能够训练合成数据以进行轮廓提取,并将其应用于实验图像。因此,我们使用合成数据集训练一个卷积神经网络U-NET的实例,以分割外壳囊的形状,并将U-NET实例应用于在国家点火设备上拍摄的一组X光片。我们表明,网络提取了少量胶囊的外壳形状,作为对ICF图像的自动轮廓提取的深度学习的初始演示。未来的工作可能包括从所有数据集中提取外壳,应用不同种类的神经网络以及提取内壳轮廓。

X-Ray radiographs are one of the primary results from inertial confinement fusion (ICF) experiments. Issues such as scarcity of experimental data, high levels of noise in the data, lack of ground truth data, and low resolution of data limit the use of machine/deep learning for automated analysis of radiographs. In this work we combat these roadblocks to the use of machine learning by creating a synthetic radiograph dataset resembling experimental radiographs. Accompanying each synthetic radiograph are corresponding contours of each capsule shell shape, which enables neural networks to train on the synthetic data for contour extraction and be applied to the experimental images. Thus, we train an instance of the convolutional neural network U-Net to segment the shape of the outer shell capsule using the synthetic dataset, and we apply this instance of U-Net to a set of radiographs taken at the National Ignition Facility. We show that the network extracted the outer shell shape of a small number of capsules as an initial demonstration of deep learning for automatic contour extraction of ICF images. Future work may include extracting outer shells from all of the dataset, applying different kinds of neural networks, and extraction of inner shell contours as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源