论文标题

在实例 - 最佳算法上,用于螺母和螺栓的概括和广义排序

On Instance-Optimal Algorithms for a Generalization of Nuts and Bolts and Generalized Sorting

论文作者

Goswami, Mayank, Jacob, Riko

论文摘要

我们将经典的螺母和螺栓问题推广到一个设置,其中输入是$ n $螺母和$ m $螺栓的集合,并且没有任何匹配对的保证。不允许将螺母直接与螺栓直接与螺栓进行比较,而目标是进行最少的螺母螺栓比较,以发现螺母和螺栓之间的部分顺序。我们称此问题\ emph {双分排序}。 我们表明,相同尺寸的双分排序的实例表现出广泛的复杂性,并建议针对此问题进行细粒度分析。我们排除实例 - 优先性的直接概念过于严格,并采用\ emph {基于邻域}的定义。我们的定义可能具有独立的兴趣,作为对文献中存在的其他静态问题的实例 - 最佳算法的统一镜头。这包括分类(Estivill-Castro和Woods,AcmComput。1992),凸赫尔(Afshani,Barbay和Chan,JACM,2017年),自适应加入(Demaine,López-oftiz和Munro,Soda 2000)以及Graphers Gragrals and Graphers(Haleupler,Haleuplerer,ro hladek ro y haleupler,rodaine) TěTek,2023)。 作为两部分排序的主要结果,我们给出了一个随机算法,该算法在基于邻里的定义方面是实例 - 最佳W.H.P.的$ O(\ log ^3(n+m))$。 作为我们的第二个贡献,我们将二分排序概括为DAG分类,而底层DAG不一定是双方的。作为DAG排序简单算法的意外结果,我们排除了\ emph {用价格信息进行分类的潜在下限,由(Charikar,Fagin,Guruswami,Kleinberg,Kleinberg,Kleinberg,Raghavan,Raghavan和Sahai,Sahai,Stoc 2000)提出。

We generalize the classical nuts and bolts problem to a setting where the input is a collection of $n$ nuts and $m$ bolts, and there is no promise of any matching pairs. It is not allowed to compare a nut directly with a nut or a bolt directly with a bolt, and the goal is to perform the fewest nut-bolt comparisons to discover the partial order between the nuts and bolts. We term this problem \emph{bipartite sorting}. We show that instances of bipartite sorting of the same size exhibit a wide range of complexity, and propose to perform a fine-grained analysis for this problem. We rule out straightforward notions of instance-optimality as being too stringent, and adopt a \emph{neighborhood-based} definition. Our definition may be of independent interest as a unifying lens for instance-optimal algorithms for other static problems existing in literature. This includes problems like sorting (Estivill-Castro and Woods, ACM Comput. Surv. 1992), convex hull (Afshani, Barbay and Chan, JACM 2017), adaptive joins (Demaine, López-Ortiz and Munro, SODA 2000), and the recent concept of universal optimality for graphs (Haeupler, Hladík, Rozhoň, Tarjan and Tětek, 2023). As our main result on bipartite sorting, we give a randomized algorithm that is within a factor of $O(\log ^3 (n+m))$ of being instance-optimal w.h.p., with respect to the neighborhood-based definition. As our second contribution, we generalize bipartite sorting to DAG sorting, when the underlying DAG is not necessarily bipartite. As an unexpected consequence of a simple algorithm for DAG sorting, we rule out a potential lower bound on the widely-studied problem of \emph{sorting with priced information}, posed by (Charikar, Fagin, Guruswami, Kleinberg, Raghavan and Sahai, STOC 2000).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源