论文标题
Lorentzian自旋泡沫理论中局部平坦度的几何形状
Geometry from local flatness in Lorentzian spin foam theories
论文作者
论文摘要
局部平坦度是所有自旋泡沫模型共享的属性。它可以通过需要本地平行的运输来确保理论的基本构件是平坦的。在简单的Lorentzian自旋泡沫理论的背景下,我们表明局部平坦度是主要负责几何形状出现的主要,而不是自旋泡沫模型的细节。我们讨论了大量子数制度中EPRL自旋泡沫振幅的渐近分析,突出了与局部平坦度的相互作用。
Local flatness is a property shared by all the spin foam models. It ensures that the theory's fundamental building blocks are flat by requiring locally trivial parallel transport. In the context of simplicial Lorentzian spin foam theory, we show that local flatness is the main responsible for the emergence of geometry independently of the details of the spin foam model. We discuss the asymptotic analysis of the EPRL spin foam amplitudes in the large quantum number regime, highlighting the interplay with local flatness.