论文标题
ZK-IMG:通过零知识证明的证明图像与虚假信息打击
ZK-IMG: Attested Images via Zero-Knowledge Proofs to Fight Disinformation
论文作者
论文摘要
在过去的几年中,产生图像的AI方法在功能上一直在增加,最近的突破使得能够高分辨率,逼真的“深击”(人为生成的图像,目的是误解或伤害)。深果的兴起有社会破坏的潜力。最近的工作提出了使用ZK-SNARKS(零知识简洁的非互动论点),并证明相机以验证图像是由摄像机拍摄的。 ZK-SNARKS只能使用标准加密硬度假设对非相互作用的图像转换(即事后)进行验证。不幸的是,这项工作并不能保留输入隐私,不切实际(仅在128 $ \ times $ 128的图像上工作)和/或需要自定义加密参数。 为了解决这些问题,我们提出了ZK-IMG,这是一个库,用于在隐藏预先转换的图像的同时证明图像转换。 ZK-IMG允许应用程序开发人员指定高级图像转换。然后,ZK-IMG将透明地将这些规格汇编为ZK-SNARKS。为了隐藏输入或输出图像,ZK-IMG将计算ZK-SNARK内部图像的哈希。我们进一步提出了安全和私人链接图像转换的方法,这允许任意进行许多转换。通过结合这些优化,ZK-IMG是第一个能够安全和私人地转换商品硬件上HD图像的系统。
Over the past few years, AI methods of generating images have been increasing in capabilities, with recent breakthroughs enabling high-resolution, photorealistic "deepfakes" (artificially generated images with the purpose of misinformation or harm). The rise of deepfakes has potential for social disruption. Recent work has proposed using ZK-SNARKs (zero-knowledge succinct non-interactive argument of knowledge) and attested cameras to verify that images were taken by a camera. ZK-SNARKs allow verification of image transformations non-interactively (i.e., post-hoc) with only standard cryptographic hardness assumptions. Unfortunately, this work does not preserve input privacy, is impractically slow (working only on 128$\times$128 images), and/or requires custom cryptographic arguments. To address these issues, we present zk-img, a library for attesting to image transformations while hiding the pre-transformed image. zk-img allows application developers to specify high level image transformations. Then, zk-img will transparently compile these specifications to ZK-SNARKs. To hide the input or output images, zk-img will compute the hash of the images inside the ZK-SNARK. We further propose methods of chaining image transformations securely and privately, which allows for arbitrarily many transformations. By combining these optimizations, zk-img is the first system to be able to transform HD images on commodity hardware, securely and privately.