论文标题

使用深卷积神经网络无网谐波检索和模型订单选择

Grid-free Harmonic Retrieval and Model Order Selection using Deep Convolutional Neural Networks

论文作者

Schieler, Steffen, Semper, Sebastian, Faramarzahangari, Reza, Döbereiner, Michael, Schneider, Christian, Thomä, R.

论文摘要

谐波检索技术是无线电通道,估计和建模的基础。本文介绍了一种从无线电通道传输函数的频率和时间样本中进行关节延迟和多普勒估计的深度学习方法。我们的工作从包含未知数量的路径的信号估算二维参数。与现有的基于深度学习的方法相比,信号参数不是通过分类估算的,而是以准网格的方式估算。这减轻了基于网格的方法产生的偏见,光谱泄漏和幽灵目标。所提出的架构还可靠地估计了测量中的路径数量。因此,它共同解决模型订单选择和参数估计任务。此外,我们提出了数据的多通道窗口,以增加估计器的鲁棒性。我们还将性能与其他谐波检索方法进行了比较,并将其集成到现有的最大似然估计器中,以有效地初始化基于梯度的迭代。

Harmonic retrieval techniques are the foundation of radio channel sounding, estimation, and modeling. This paper introduces a Deep Learning approach for joint delay- and Doppler estimation from frequency and time samples of a radio channel transfer function. Our work estimates the two-dimensional parameters from a signal containing an unknown number of paths. Compared to existing deep learning-based methods, the signal parameters are not estimated via classification but in a quasi-grid-free manner. This alleviates the bias, spectral leakage, and ghost targets that grid-based approaches produce. The proposed architecture also reliably estimates the number of paths in the measurement. Hence, it jointly solves the model order selection and parameter estimation task. Additionally, we propose a multi-channel windowing of the data to increase the estimator's robustness. We also compare the performance to other harmonic retrieval methods and integrate it into an existing maximum likelihood estimator for efficient initialization of a gradient-based iteration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源