论文标题

旗杆上的标量曲率几乎是偏僻的结构

Scalar curvatures of invariant almost Hermitian structures on flag manifolds with two and three isotropic summands

论文作者

Grama, Lino, Oliveira, Ailton R.

论文摘要

在本文中,我们研究了几乎不变的遗py几何形状,这些几何形状将各向同性表示分解为两个或三个不可约的成分。我们将提供这样的标志歧管的分类,即承认像标量曲率度量的Kähler,也就是说,几乎是Hermitian结构$(G,J)$满足$ s = 2s_c $,其中$ s $是Riemannian scalialian stalarcurvature and $ s_c $是Chern Scalar Curvature。

In this paper we study invariant almost Hermitian geometry on generalized flag manifolds which the isotropy representation decompose into two or three irreducible components. We will provide a classification of such flag manifolds admitting Kähler like scalar curvature metric, that is, almost Hermitian structures $(g,J)$ satisfying $s=2s_C$ where $s$ is Riemannian scalar curvature and $s_C$ is the Chern scalar curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源