论文标题

生物标志物检测的临床对比学习

Clinical Contrastive Learning for Biomarker Detection

论文作者

Kokilepersaud, Kiran, Prabhushankar, Mohit, AlRegib, Ghassan

论文摘要

本文提出了一种基于可以从临床数据中提取的标签的医学图像进行对比学习的新型正面和负面选择策略。在医学领域,存在各种标签,用于数据,这些标签在诊断和治疗过程的不同阶段都有不同的目的。临床标签和生物标志物标签是两个例子。通常,临床标签更容易以更大的数量获得,因为它们是在常规临床护理中定期收集的,而生物标记标签则需要专家分析和解释才能获得。在眼科领域,先前的工作表明,临床值与在光学相干层析成像(OCT)扫描中表现出的生物标志物结构的相关性。我们利用临床和生物标志物数据之间的这种关系来提高生物标志物分类的性能。这是通过利用大量的临床数据作为我们的数据的伪标签来实现的,而无需生物标记标签,以便选择带有监督对比损失的骨干网络的正面和负面实例。通过这种方式,一个骨干网络学习了一个与可用的临床数据分布保持一致的表示空间。之后,我们以这种方式以这种方式训练的网络使用较少的生物标记物标记的数据,并具有跨凝性损失,以直接从OCT扫描中直接对这些关键疾病指标进行分类。在单个生物标志物检测中的准确性方面,我们的方法表明,我们的方法表现出色的自我监督方法的状态多达5%。

This paper presents a novel positive and negative set selection strategy for contrastive learning of medical images based on labels that can be extracted from clinical data. In the medical field, there exists a variety of labels for data that serve different purposes at different stages of a diagnostic and treatment process. Clinical labels and biomarker labels are two examples. In general, clinical labels are easier to obtain in larger quantities because they are regularly collected during routine clinical care, while biomarker labels require expert analysis and interpretation to obtain. Within the field of ophthalmology, previous work has shown that clinical values exhibit correlations with biomarker structures that manifest within optical coherence tomography (OCT) scans. We exploit this relationship between clinical and biomarker data to improve performance for biomarker classification. This is accomplished by leveraging the larger amount of clinical data as pseudo-labels for our data without biomarker labels in order to choose positive and negative instances for training a backbone network with a supervised contrastive loss. In this way, a backbone network learns a representation space that aligns with the clinical data distribution available. Afterwards, we fine-tune the network trained in this manner with the smaller amount of biomarker labeled data with a cross-entropy loss in order to classify these key indicators of disease directly from OCT scans. Our method is shown to outperform state of the art self-supervised methods by as much as 5% in terms of accuracy on individual biomarker detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源