论文标题
Kudla在正交Shimura品种的积分模型上的模块化猜想
Kudla's modularity conjecture on integral models of orthogonal Shimura varieties
论文作者
论文摘要
我们在正交Shimura品种的积分模型上构建了一个特殊周期类别的家族,并表明这些周期类别显示为Siegel模块化形式的傅立叶系数。传递到Shimura品种的通用纤维恢复了Bruinier和Raum的结果,最初由Kudla猜想。
We construct a family of special cycle classes on the integral model of an orthogonal Shimura variety, and show that these cycle classes appear as Fourier coefficients of a Siegel modular form. Passing to the generic fiber of the Shimura variety recovers a result of Bruinier and Raum, originally conjectured by Kudla.