论文标题
$ a_ \ infty $ ropterient $在稳定磁盘地图模量上的Orientor演奏中的关系
$A_\infty$ relations in orientor calculus on moduli of stable disk maps
论文作者
论文摘要
令$ l \ subset x $为符号歧管$ x $的不一定是相对$ pin $ lagrangian submanifold。 $ j $ - 霍尔型磁盘的模量空间的评估图可能是相对定向的。为了解决这个问题,我们介绍了东方的概念。在东方上的自然操作之间的相互作用受东方微积分的控制。东方微积分引起了一个$ j $ holomormorphic稳定磁盘地图的东方家族,并在满足自然关系的$ l $中的边界。在续集中,我们使用这些东方和关系来构建$L。
Let $L\subset X$ be a not necessarily orientable relatively $Pin$ Lagrangian submanifold in a symplectic manifold $X$. Evaluation maps of moduli spaces of $J$-holomorphic disks with boundary in $L$ may not be relatively orientable. To deal with this problem, we introduce the notion of an orientor. Interactions between the natural operations on orientors are governed by orientor calculus. Orientor calculus gives rise to a family of orientors on moduli spaces of $J$-holomorphic stable disk maps with boundary in $L$ that satisfy natural relations. In a sequel, we use these orientors and relations to construct the Fukaya $A_\infty$ algebra of $L.$