论文标题
SN 2022ANN:矮人星系中的ICN超新星类型
SN 2022ann: A type Icn supernova from a dwarf galaxy that reveals helium in its circumstellar environment
论文作者
论文摘要
我们介绍了ICN Supernova类型(SN ICN)2022ANN的光学和近红外(NIR),这是其新近识别的SNE类别的第五个成员。它的早期光谱以狭窄的碳和氧气p-cygni特征为主,吸收速度为800 km/s。比其他SNE ICN慢,并指示与典型的狼射线风速$> $> 1000 km/s相比,流出慢的浓密的,poor的室内介质(CSM)的相互作用慢。我们在最大两周后两周内获得的NIR光谱中的氦气鉴定,三周后表明CSM并非完全没有氦气。我们从未检测到SN弹射器的广泛光谱特征,包括在延伸到Nebular相的光谱中,这是SNE〜ICN中的独特特征。与其他SNE ICN相比,SN 2022ANN的发光度低,峰值O波段的绝对幅度为-17.7,并且缓慢发展。我们对降压光曲线进行建模,并发现它由1.7 m_sun的Sn ejecta与CSM的0.2 m_sun相互作用很好地描述。我们将爆炸中合成的Ni56的0.04 m_sun上限为0.04 m_sun。主机星系是一个矮星系,其恒星质量为10^7.34 m_sun(log的暗示金属性(z/z_sun)$ \ $ \ $ 0.10),log(sfr)的集成星形构型= -2.20 m_sun/yr;两者都低于97 \%的星系,但观察到产生核心折叠超新星的星系,尽管与星系主序列上的星系星系一致。低CSM速度,镍和喷射质量以及可能的低金属环境不散发单个狼射线祖细胞之星。取而代之的是,可能需要二元伴侣恒星在爆炸前充分剥离祖细胞并产生低速流出。低CSM速度可能表明恒星二进制祖细胞中的拉格朗日点,而不是来自单个狼射线样巨星的逃逸速度。
We present optical and near-infrared (NIR) observations of the Type Icn supernova (SN Icn) 2022ann, the fifth member of its newly identified class of SNe. Its early optical spectra are dominated by narrow carbon and oxygen P-Cygni features with absorption velocities of 800 km/s; slower than other SNe Icn and indicative of interaction with a dense, H/He-poor circumstellar medium (CSM) that is outflowing slower than a typical Wolf-Rayet wind velocity of $>$1000 km/s. We identify helium in NIR spectra obtained two weeks after maximum and in optical spectra at three weeks, demonstrating that the CSM is not fully devoid of helium. We never detect broad spectral features from SN ejecta, including in spectra extending to the nebular phase, a unique characteristic among SNe~Icn. Compared to other SNe Icn, SN 2022ann has a low luminosity, with a peak o-band absolute magnitude of -17.7, and evolves slowly. We model the bolometric light curve and find it is well-described by 1.7 M_Sun of SN ejecta interacting with 0.2 M_sun of CSM. We place an upper limit of 0.04 M_Sun of Ni56 synthesized in the explosion. The host galaxy is a dwarf galaxy with a stellar mass of 10^7.34 M_Sun (implied metallicity of log(Z/Z_Sun) $\approx$ 0.10) and integrated star-formation rate of log(SFR) = -2.20 M_sun/yr; both lower than 97\% of the galaxies observed to produce core-collapse supernovae, although consistent with star-forming galaxies on the galaxy Main Sequence. The low CSM velocity, nickel and ejecta masses, and likely low-metallicity environment disfavour a single Wolf-Rayet progenitor star. Instead, a binary companion star is likely required to adequately strip the progenitor before explosion and produce a low-velocity outflow. The low CSM velocity may be indicative of the outer Lagrangian points in the stellar binary progenitor, rather than from the escape velocity of a single Wolf-Rayet-like massive star.