论文标题
通过动态树胶囊网络的负担得起检测
Affordance detection with Dynamic-Tree Capsule Networks
论文作者
论文摘要
来自视觉输入的负担能力检测是自动机器人操作的基本步骤。可负担检测问题的现有解决方案取决于卷积神经网络。但是,这些网络不考虑输入数据的空间布置,而错过了零件到整个关系的关系。因此,当面对新颖的,以前看不见的对象实例或新观点时,它们就会失败。克服这种限制的一种解决方案可能是诉诸胶囊网络。在本文中,我们根据稀疏3D点云的动态树结构胶囊介绍了第一个负担得起的检测网络。我们表明,基于胶囊的网络在视点不变性上优于当前最新模型,并且通过我们仅用于评估的新型数据集对新对象实例进行了新的对象实例的零件分割,并且可以从Github.com/gipfelen/dtcg-net上公开获得。在实验评估中,我们将表明,由于我们的胶囊网络强制执行零件到整个表示形式,我们的算法面对掌握先前看不见的对象时,算法优于当前的负担得起检测方法。
Affordance detection from visual input is a fundamental step in autonomous robotic manipulation. Existing solutions to the problem of affordance detection rely on convolutional neural networks. However, these networks do not consider the spatial arrangement of the input data and miss parts-to-whole relationships. Therefore, they fall short when confronted with novel, previously unseen object instances or new viewpoints. One solution to overcome such limitations can be to resort to capsule networks. In this paper, we introduce the first affordance detection network based on dynamic tree-structured capsules for sparse 3D point clouds. We show that our capsule-based network outperforms current state-of-the-art models on viewpoint invariance and parts-segmentation of new object instances through a novel dataset we only used for evaluation and it is publicly available from github.com/gipfelen/DTCG-Net. In the experimental evaluation we will show that our algorithm is superior to current affordance detection methods when faced with grasping previously unseen objects thanks to our Capsule Network enforcing a parts-to-whole representation.