论文标题
解决螃蟹脉冲星的巨型脉冲的发射区域II。相对论运动的证据
Resolving the Emission Regions of the Crab Pulsar's Giant Pulses II. Evidence for Relativistic Motion
论文作者
论文摘要
螃蟹脉冲星是巨型脉冲发射极的主要例子。这些简短的非常明亮的脉冲被认为是在轻圆柱附近,以$ \ sim \!1600 {\ rm \; km} $从Pulsar中获得。 Pulsar在螃蟹星云中的位置提供了一种与镜头一样散布无线电波的星云来解决发射区域的异常机会。我们尝试使用在欧洲VLBI网络观测中发现的61998巨型脉冲的样本,价格为18美元{\ rm \; cm} $。这些是在相对强烈的散射和良好有效分辨率的情况下采取的,并且从脉冲光谱之间的相关性中,我们表明确实解决了巨大的脉搏发射区域。我们分别推断出明显的直径为$ \ sim \!2000 $和$ \ sim \!2400 {\ rm \; km \; km} $,分别为主要和螺栓组件,并表明,随着这些尺寸的相关幅度振幅和去度计时的时间表和频段,可以在以前的数量中理解相关性振幅和去频率。使用脉搏谱统计和极化之间的相关性,我们还表明,星云分辨出构成个别巨型脉冲的纳米摩鼠。 $ \ sim \!1100 {\ rm \; km} $的隐含直径远超过了轻度旅行时间估计,这表明发射等离子体正在相对移动,$γ\ simeq10^{4} $,如先前从巨大脉冲散射的散射带中推理的那样,如前所述。如果是这样,则发射发生在沿视线延伸的区域上,$ \ sim \!10^{7} {\ rm \; km} $。我们得出的结论是,相对论运动可能对产生巨型脉冲很重要,并且对于其他短而明亮的无线电发射(例如快速无线电爆发)的其他来源也可能相似。
The Crab Pulsar is the prime example of an emitter of giant pulses. These short, very bright pulses are thought to originate near the light cylinder, at $\sim\!1600{\rm\;km}$ from the pulsar. The pulsar's location inside the Crab Nebula offers an unusual opportunity to resolve the emission regions, using the nebula, which scatters radio waves, as a lens. We attempt to do this using a sample of 61998 giant pulses found in coherently combined European VLBI network observations at $18{\rm\;cm}$. These were taken at times of relatively strong scattering and hence good effective resolution, and from correlations between pulse spectra, we show that the giant pulse emission regions are indeed resolved. We infer apparent diameters of $\sim\!2000$ and $\sim\!2400{\rm\;km}$ for the main and interpulse components, respectively, and show that with these sizes the correlation amplitudes and decorrelation timescales and bandwidths can be understood quantitatively, both in our observations and in previous ones. Using pulse-spectra statistics and correlations between polarizations, we also show that the nebula resolves the nanoshots that comprise individual giant pulses. The implied diameters of $\sim\!1100{\rm\;km}$ far exceed light travel-time estimates, suggesting the emitting plasma is moving relativistically, with $γ\simeq10^{4}$, as inferred previously from drifting bands during the scattering tail of a giant pulse. If so, the emission happens over a region extended along the line of sight by $\sim\!10^{7}{\rm\;km}$. We conclude that relativistic motion likely is important for producing giant pulses, and may be similarly for other sources of short, bright radio emission, such as fast radio bursts.