论文标题

量子微分方程求解器:局限性和快进

Quantum differential equation solvers: limitations and fast-forwarding

论文作者

An, Dong, Liu, Jin-Peng, Wang, Daochen, Zhao, Qi

论文摘要

我们研究线性普通微分方程(ODE)系统的量子算法的局限性和快速性,特别关注非量化动力学,其中ode中的系数矩阵不是抗赫米特式的,或者ode ode不均。一方面,对于通用线性ODE,通过证明最差的下限,我们表明量子算法由于两种类型的``非量化''而遭受计算开销的损失:系数矩阵的实际部分间隙和非正常性。然后,我们表明,在没有两种类型的``非量化性''的情况下均匀的ODE等同于量子动力学,并且得出的结论是,量子动力学的量子算法最有效。为了获得这些下限,我们提出了一个通用框架,用于证明是放大器的量子算法上的下限,这意味着它们会放大一对输入量子状态之间的差异。另一方面,我们展示了如何快速前进的量子算法来解决特殊类别的ODE,从而提高了效率。更具体地说,我们获得了$ t $的指数改进和具有有效实现的特征系统(包括各种空间离散的线性进化偏微分方程)的无均匀ODE的系数矩阵的光谱规范。我们给出了快速发展的算法,这些算法在概念上与现有算法不同,因为它们既不需要时间离散,也不需要解决高维线性系统。

We study the limitations and fast-forwarding of quantum algorithms for linear ordinary differential equation (ODE) systems with a particular focus on non-quantum dynamics, where the coefficient matrix in the ODE is not anti-Hermitian or the ODE is inhomogeneous. On the one hand, for generic linear ODEs, by proving worst-case lower bounds, we show that quantum algorithms suffer from computational overheads due to two types of ``non-quantumness'': real part gap and non-normality of the coefficient matrix. We then show that homogeneous ODEs in the absence of both types of ``non-quantumness'' are equivalent to quantum dynamics, and reach the conclusion that quantum algorithms for quantum dynamics work best. To obtain these lower bounds, we propose a general framework for proving lower bounds on quantum algorithms that are amplifiers, meaning that they amplify the difference between a pair of input quantum states. On the other hand, we show how to fast-forward quantum algorithms for solving special classes of ODEs which leads to improved efficiency. More specifically, we obtain exponential improvements in both $T$ and the spectral norm of the coefficient matrix for inhomogeneous ODEs with efficiently implementable eigensystems, including various spatially discretized linear evolutionary partial differential equations. We give fast-forwarding algorithms that are conceptually different from existing ones in the sense that they neither require time discretization nor solving high-dimensional linear systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源