论文标题

骨骼表示的对比度自我监督学习

Contrastive Self-Supervised Learning for Skeleton Representations

论文作者

Lingg, Nico, Sarabia, Miguel, Zappella, Luca, Theobald, Barry-John

论文摘要

人骨架点云通常用于自动对他人的行为进行分类和预测。在本文中,我们使用一种对比的自我监督学习方法SIMCLR来学习捕获骨架点云语义的表示形式。这项工作着重于系统地评估不同算法决策(包括增强,数据集分区和骨干体系结构)对学习骨架表示的影响。为了预先训练表示,我们将六个现有数据集归一化以获得超过4000万个骨架框架。我们通过三个下游任务评估了学习表示的质量:骨架重建,运动预测和活动分类。我们的结果证明了1)结合空间和时间增强的重要性,2)包括用于编码器训练的其他数据集,以及3)以及将图神经网络作为编码器。

Human skeleton point clouds are commonly used to automatically classify and predict the behaviour of others. In this paper, we use a contrastive self-supervised learning method, SimCLR, to learn representations that capture the semantics of skeleton point clouds. This work focuses on systematically evaluating the effects that different algorithmic decisions (including augmentations, dataset partitioning and backbone architecture) have on the learned skeleton representations. To pre-train the representations, we normalise six existing datasets to obtain more than 40 million skeleton frames. We evaluate the quality of the learned representations with three downstream tasks: skeleton reconstruction, motion prediction, and activity classification. Our results demonstrate the importance of 1) combining spatial and temporal augmentations, 2) including additional datasets for encoder training, and 3) and using a graph neural network as an encoder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源