论文标题
大概模型的贝叶斯分数校准
Bayesian score calibration for approximate models
论文作者
论文摘要
科学家继续开发越来越复杂的机械模型,以更现实地反映其知识。使用这些模型的统计推断可能具有挑战性,因为相应的似然函数通常是棘手的,并且模型模拟在计算上可能是繁重的。幸运的是,在许多情况下,可以采用替代模型或近似似然函数。直接用替代物进行贝叶斯推断可能很方便,但这可能导致偏见和不确定性量化。在本文中,我们提出了一种调整近似后样品的新方法,以减少偏差并产生更准确的不确定性定量。我们通过优化近似后部的变换来做到这一点,从而最大化评分规则。我们的方法仅需要(固定)少量的复杂模型模拟,并且在数值上是稳定的。我们在增加复杂性的几个示例中证明了新方法的良好性能。
Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to conduct Bayesian inference directly with the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimizing a transform of the approximate posterior that maximizes a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.