论文标题

贝尔的定理是因果关系统计理论的一种练习

Bell's theorem is an exercise in the statistical theory of causality

论文作者

Gill, Richard D.

论文摘要

在此简短说明中,我根据图形模型或贝叶斯网的当今统计因果理论得出了贝尔 - 奇什的不平等,该理论代表了DAGS(有向的无环图)定义的,代表了直接的统计因果关系,代表了观察到的许多观察到的随机变量和未观察到的随机变量的数量之间的直接统计因果。我展示了无漏洞实验中的时空约束以及自然经典的统计因果关系的考虑,导致贝尔对局部隐藏变量的概念,从而导致CHSH不平等现象。 “本地”一词适用于所选设置影响观察到的结果的方式。尽管最近声称可以以这种方式绕过贝尔的结论,但自动涵盖了与上下文设置相关的隐藏变量(认为位于测量设备中,并取决于测量设置的情况)的情况。

In this short note, I derive the Bell-CHSH inequalities as an elementary result in the present-day theory of statistical causality based on graphical models or Bayes' nets, defined in terms of DAGs (Directed Acyclic Graphs) representing direct statistical causal influences between a number of observed and unobserved random variables. I show how spatio-temporal constraints in loophole-free Bell experiments, and natural classical statistical causality considerations, lead to Bell's notion of local hidden variables, and thence to the CHSH inequalities. The word "local" applies to the way that the chosen settings influence the observed outcomes. The case of contextual setting-dependent hidden variables (thought of as being located in the measurement devices and dependent on the measurement settings) is automatically covered, despite recent claims that Bell's conclusions can be circumvented in this way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源