论文标题

一些简单随机步行及其最大过程

Some Martingale Properties of Simple Random Walk and Its Maximum Process

论文作者

Fujita, Takahiko, Yagishita, Shotaro, Yoshida, Naohiro

论文摘要

在本文中,研究了与简单的随机步行有关的群众及其最大过程。首先,有一个充分的条件,在该条件下,具有三个参数,时间,随机步行及其最大过程的函数将呈现一个曲目,并且作为应用程序,提供了一种推导肯尼迪·马丁格(Kennedy Martingale)的替代方法。然后,提出了具有两个参数的函数的完整表征,即随机步行及其最大值,即the派。这个马丁加尔可以被视为Azéma-Yor Martingale的离散版本。由于Yor Martingale的离散Azéma的应用,提供了DOOB不平等的证据,并提供了离散的Azéma-YOR解决方案是Skorokhod嵌入问题的简单随机步行问题的解决方案,并详细介绍了简单的随机步行。

In this paper, martingales related to simple random walks and their maximum process are investigated. First, a sufficient condition under which a function with three arguments, time, the random walk, and its maximum process becomes a martingale is presented, and as an application, an alternative way of deriving the Kennedy martingale is provided. Then, a complete characterization of a function with two arguments, the random walk and its maximum, being a martingale is presented. This martingale can be regarded as a discrete version of the Azéma--Yor martingale. As applications of discrete Azéma--Yor martingale, a proof of the Doob's inequalities is provided and a discrete Azéma--Yor solution for the Skorokhod embedding problem for the simple random walk is formulated and examined in detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源