论文标题

潮汐如何与快速旋转的行星和恒星中的对流涡流相互作用?

How do tidal waves interact with convective vortices in rapidly-rotating planets and stars?

论文作者

Dandoy, Virgile, Park, Junho, Augustson, Kyle, Astoul, Aurélie, Mathis, Stéphane

论文摘要

行星和恒星对流区域中潮汐惯性波的耗散是驱动星空/行星 - 月球系统进化的关键机制之一。在这种情况下,必须以现实和健壮的方式对潮汐惯性波和湍流流之间的相互作用进行建模。在最先进的模拟中,大多数时候通过有效的涡流粘度对潮汐上的对流施加的摩擦是建模。当对流涡流的特征长度比潮汐的特征长度尺度小时时,这种方法可能是有效的。然而,在潮汐与潜在稳定的大规模涡流相互作用的情况下,它变得非常可疑,就像在木星和土星的极点观察到的那样。它们可能是通过快速旋转体中的对流触发的,在这种物体中,沿旋转轴方向形成柱状涡流结构中的Coriolis加速度。在本文中,我们研究了潮汐惯性波和柱状对流涡流之间的复杂相互作用。我们使用对流柱状涡流的准地球形半分析模型。我们执行线性稳定性分析,以确定不稳定的制度,并进行对流涡流与传入潮汐惯性波之间相互作用的线性数值模拟。我们验证了在不稳定的制度中,进入的潮汐惯性波触发涡流中最不稳定的模式,导致湍流消散。对于稳定的涡旋,波浪涡流相互作用会导致动量混合,而涡流则在涡流核心周围创建一个低速区域,并以远处辐射的渐进波辐射的形式形式的新波动扰动。当传入波的波长接近涡流的特征大小时,该次波的发射是最强的。

The dissipation of tidal inertial waves in planetary and stellar convective regions is one of the key mechanisms that drive the evolution of star-planet/planet-moon systems. In this context, the interaction between tidal inertial waves and turbulent convective flows must be modelled in a realistic and robust way. In the state-of-the-art simulations, the friction applied by convection on tidal waves is modelled most of the time by an effective eddy-viscosity. This approach may be valid when the characteristic length scales of convective eddies are smaller than those of tidal waves. However, it becomes highly questionable in the case where tidal waves interact with potentially stable large-scale vortices, as those observed at the pole of Jupiter and Saturn. They are potentially triggered by convection in rapidly-rotating bodies in which the Coriolis acceleration forms the flow in columnar vortical structures along the direction of the rotation axis. In this paper, we investigate the complex interactions between a tidal inertial wave and a columnar convective vortex. We use a quasi-geostrophic semi-analytical model of a convective columnar vortex. We perform linear stability analysis to identify the unstable regime and conduct linear numerical simulations for the interactions between the convective vortex and an incoming tidal inertial wave. We verify that in the unstable regime, an incoming tidal inertial wave triggers the most unstable mode of the vortex leading to turbulent dissipation. For stable vortices, the wave-vortex interaction leads to the momentum mixing while it creates a low-velocity region around the vortex core and a new wave-like perturbation in the form of a progressive wave radiating in the far field. The emission of this secondary wave is the strongest when the wavelength of the incoming wave is close to the characteristic size of the vortex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源