论文标题
精确全息图的DE Sitter熵的微观图
Microscopics of de Sitter Entropy from Precision Holography
论文作者
论文摘要
我们将量子校正计算为在重力作用和一环效应中,由高衍生术语引起的四维DE灵性空间的熵。通过使用欧几里得的安慰剂和反de的鞍座的半经典重力的交织,我们将有效的de de de de de de de de de de de de Gravity理论嵌入了理论中,并以正则欧几里得抗de的辅助作用来表达熵,以辅助$ \ mathrm {eads {ead}我们猜想全息二次3D ABJM CFT的分区函数确定了对DE Sitter熵的校正的明确形式。这包括一个对数术语,我们表明的系数与$ -S^4 \ times s^7/\ Mathbb {z} _K $ Euclidean de Sitter Saddle围绕$ -S^4 \ times S^7/\ Mathbb {z^7/\ Mathbb {z^7/\ Mathbb {这提供了证据表明,重力理论中四维de安慰剂空间的熵背后的显微镜自由度,并通过三个球体上的欧几里得CFT的路径积分封装了全息二描述。
We calculate quantum corrections to the entropy of four-dimensional de Sitter space induced by higher-derivative terms in the gravitational action and by one-loop effects. Employing the intertwinement in semiclassical gravity of Euclidean de Sitter and anti-de Sitter saddles, we embed effective de Sitter gravity theories in M-theory and express the entropy in terms of the regularized Euclidean anti-de Sitter action on an auxiliary $\mathrm{EAdS}_4 \times S^7/\mathbb{Z}_k$ background. We conjecture that the partition function of the holographically dual 3d ABJM CFT determines the explicit form of the corrections to the de Sitter entropy. This includes a logarithmic term, the coefficient of which, we show, agrees with an independent one-loop calculation around the $-S^4 \times S^7/\mathbb{Z}_k$ Euclidean de Sitter saddle. This provides evidence that the microscopic degrees of freedom behind the entropy of four-dimensional de Sitter space in gravitational theories with a holographic dual description are encapsulated by the path integral of the Euclidean CFT on the three-sphere.