论文标题

基于stackelberg meta-arearning的指导合作LQG系统的控制

Stackelberg Meta-Learning Based Control for Guided Cooperative LQG Systems

论文作者

Zhao, Yuhan, Zhu, Quanyan

论文摘要

指导合作允许具有异质能力的智能代理人通过遵循领导者的互动类型来共同努力。但是,当领导者没有有关追随者代理的完整信息时,相关的控制问题变得具有挑战性。需要学习和适应合作计划。为此,我们开发了一个基于元学习的Stackelberg游戏理论框架,以应对线性系统的指导合作控制中的挑战。我们首先将代理商之间的指导合作作为动态的Stackelberg游戏,并使用反馈Stackelberg平衡作为代理合作策略。我们进一步利用元学习来解决追随者代理商的不完整信息,在该信息中,领导者从一个脱机的规定关注者组中学习了一个元回答模型,并适应了带有少量学习数据的新的合作任务。我们使用机器人团队中的案例研究来证实框架的有效性。与其他学习方法的比较还表明,我们的学习合作策略为不同的合作任务提供了更好的可转让性。

Guided cooperation allows intelligent agents with heterogeneous capabilities to work together by following a leader-follower type of interaction. However, the associated control problem becomes challenging when the leader agent does not have complete information about follower agents. There is a need for learning and adaptation of cooperation plans. To this end, we develop a meta-learning-based Stackelberg game-theoretic framework to address the challenges in the guided cooperative control for linear systems. We first formulate the guided cooperation between agents as a dynamic Stackelberg game and use the feedback Stackelberg equilibrium as the agent-wise cooperation strategy. We further leverage meta-learning to address the incomplete information of follower agents, where the leader agent learns a meta-response model from a prescribed set of followers offline and adapts to a new coming cooperation task with a small amount of learning data. We use a case study in robot teaming to corroborate the effectiveness of our framework. Comparison with other learning approaches also shows that our learned cooperation strategy provides better transferability for different cooperation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源