论文标题

通过满意的机器比率建模的机器的感知视频编码

Perceptual Video Coding for Machines via Satisfied Machine Ratio Modeling

论文作者

Zhang, Qi, Wang, Shanshe, Zhang, Xinfeng, Jia, Chuanmin, Wang, Zhao, Ma, Siwei, Gao, Wen

论文摘要

机器的视频编码(VCM)旨在压缩视觉信号以进行机器分析。但是,现有方法仅考虑一些机器,忽略了大多数机器。此外,机器的感知特征无法有效利用,从而导致了次优压缩效率。为了克服这些局限性,本文介绍了满足机器比率(SMR),该指标通过汇总其满意度得分来统计评估压缩图像和视频的感知质量。每个分数均来自原始图像和压缩图像之间的机器感知差异。针对图像分类和对象检测任务,我们构建了两个代表性的机器库,用于SMR注释,并创建一个大规模的SMR数据集以促进SMR研究。然后,我们根据深度特征差异与SMR之间的相关性提出了一个SMR预测模型。此外,我们引入了一项辅助任务,通过预测两个图像之间的SMR差异不同,以提高预测准确性。广泛的实验表明,SMR模型可显着改善机器的压缩性能,并在看不见的机器,编解码器,数据集和框架类型上具有强大的概括性。 SMR可以对机器的感知编码和将VCM从特异性推向一般性。代码可在https://github.com/ywwynm/smr上找到。

Video Coding for Machines (VCM) aims to compress visual signals for machine analysis. However, existing methods only consider a few machines, neglecting the majority. Moreover, the machine's perceptual characteristics are not leveraged effectively, resulting in suboptimal compression efficiency. To overcome these limitations, this paper introduces Satisfied Machine Ratio (SMR), a metric that statistically evaluates the perceptual quality of compressed images and videos for machines by aggregating satisfaction scores from them. Each score is derived from machine perceptual differences between original and compressed images. Targeting image classification and object detection tasks, we build two representative machine libraries for SMR annotation and create a large-scale SMR dataset to facilitate SMR studies. We then propose an SMR prediction model based on the correlation between deep feature differences and SMR. Furthermore, we introduce an auxiliary task to increase the prediction accuracy by predicting the SMR difference between two images in different quality. Extensive experiments demonstrate that SMR models significantly improve compression performance for machines and exhibit robust generalizability on unseen machines, codecs, datasets, and frame types. SMR enables perceptual coding for machines and propels VCM from specificity to generality. Code is available at https://github.com/ywwynm/SMR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源