论文标题

点-DAE:为自我监督点云学习的DENOSO AutoCododer

Point-DAE: Denoising Autoencoders for Self-supervised Point Cloud Learning

论文作者

Zhang, Yabin, Lin, Jiehong, Li, Ruihuang, Jia, Kui, Zhang, Lei

论文摘要

蒙面的自动编码器在自我监督的点云学习中展示了其有效性。考虑到掩饰是一种腐败,在这项工作中,我们通过调查超出掩盖的更多类型的腐败来探索更一般的DeNoing自动编码器,以进行点云学习(Point-Dae)。具体来说,我们以某些损坏为输入来降低点云,并学习一个编码器模型,以从其损坏的版本中重建原始点云。三个腐败家族(\ ie,密度/掩蔽,噪音和仿射转换),总共使用传统的非转变器编码器研究了14种腐败类型。除了流行的掩盖腐败外,我们还确定了另一个有效的腐败家庭,即仿射转变。仿射转换在全球范围内打扰了所有点,这与掩盖某些地方区域的掩盖腐败相辅相成。我们还通过变压器骨架验证了仿射变换损坏的有效性,在那里我们将完整点云的重建分解为详细的本地斑块和粗糙的全球形状的重建,从而减轻了重建中的位置泄漏问题。关于对象分类任务,很少学习,鲁棒性测试,部分分割和3D对象检测的广泛实验验证了所提出方法的有效性。这些代码可在\ url {https://github.com/ybzh/point-dae}中获得。

Masked autoencoder has demonstrated its effectiveness in self-supervised point cloud learning. Considering that masking is a kind of corruption, in this work we explore a more general denoising autoencoder for point cloud learning (Point-DAE) by investigating more types of corruptions beyond masking. Specifically, we degrade the point cloud with certain corruptions as input, and learn an encoder-decoder model to reconstruct the original point cloud from its corrupted version. Three corruption families (\ie, density/masking, noise, and affine transformation) and a total of fourteen corruption types are investigated with traditional non-Transformer encoders. Besides the popular masking corruption, we identify another effective corruption family, \ie, affine transformation. The affine transformation disturbs all points globally, which is complementary to the masking corruption where some local regions are dropped. We also validate the effectiveness of affine transformation corruption with the Transformer backbones, where we decompose the reconstruction of the complete point cloud into the reconstructions of detailed local patches and rough global shape, alleviating the position leakage problem in the reconstruction. Extensive experiments on tasks of object classification, few-shot learning, robustness testing, part segmentation, and 3D object detection validate the effectiveness of the proposed method. The codes are available at \url{https://github.com/YBZh/Point-DAE}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源