论文标题
马尔可夫在岛屿上的差距
The Markov gap in the presence of islands
论文作者
论文摘要
Markov Gap \ cite {Hayden:2021gno},即反射熵和相互信息之间的差异,在缺陷的极端表面模型,JT重力和通用2D极端黑洞中明确计算在真空状态下。 考虑了包含各种岛屿贡献的阶段,并仔细检查了它们的存在。 此外,我们明确地表明了马尔可夫差距如何源自边界CFT的OPE系数。而且,作为\ cite {Hayden:2021gno}的概括,Markov Gap的下限由$ \ frac {c} {3} {3} \ log 2 $ 2 $乘以最小表面上的EWCS边界数的数量。 我们提出了一种计算马尔可夫差距的下限的边界方式,该方式指出,下限由$ \ frac {c} {3} {3} \ log 2 $ 2 $乘以真空状态的两个边界区域之间的间隙数。 我们讨论边界计数的局限性和可能的概括及其与三方纠缠的关系。
The Markov gap \cite{Hayden:2021gno}, namely the difference between reflected entropy and mutual information, is explicitly computed in the defect extremal surface model, JT gravity, and the generic 2d extremal black holes, in vacuum states. The phases that contain various island contributions are considered, and their existence is carefully checked. Moreover, we show explicitly how the Markov gap originates from the OPE coefficient of the boundary CFT. And, as a generalization of \cite{Hayden:2021gno}, the lower bound of the Markov gap is given by $\frac{c}{3}\log 2$ times the number of EWCS boundaries on minimal surfaces. We propose a boundary way of counting the lower bound for the Markov gap, which states that the lower bound is given by $\frac{c}{3}\log 2$ times the number of gaps between two boundary regions in vacuum states. We discuss the limitation and possible generalization of the boundary counting, and its relation to tripartite entanglement.