论文标题
Spade:在不断发展的图表上的实时欺诈检测框架(完整版本)
Spade: A Real-Time Fraud Detection Framework on Evolving Graphs (Complete Version)
论文作者
论文摘要
对于大多数财务和电子商业平台来说,实时欺诈检测是一个挑战。为了确定欺诈性社区,Grab是东南亚最大的技术公司之一,从一组交易中形成了一张图,并检测到欺诈者异常数量的连接引起的密集子图。现有的密集子图检测方法集中在静态图上,而无需考虑交易图是高度动态的事实。此外,从头开始检测图形更新的密集子图很耗时,无法满足行业的实时需求。为了解决这个问题,我们引入了一个名为Spade的增量实时欺诈检测框架。 Spade可以通过逐步维护密集的子图来检测数百个微秒尺度图的欺诈社区。此外,Spade支持批处理更新和边缘分组,以减少响应延迟。最后,Spade为不断发展的欺诈检测语义设计提供了简单但表现力的API。开发人员将自定义的可疑功能插入Spade,从而将其语义缩减而无需重塑其算法。广泛的实验表明,Spade在数百万尺度的图表上实时检测欺诈性社区。脱皮算法通过铲子增量的速度比静态版本快一百万倍。
Real-time fraud detection is a challenge for most financial and electronic commercial platforms. To identify fraudulent communities, Grab, one of the largest technology companies in Southeast Asia, forms a graph from a set of transactions and detects dense subgraphs arising from abnormally large numbers of connections among fraudsters. Existing dense subgraph detection approaches focus on static graphs without considering the fact that transaction graphs are highly dynamic. Moreover, detecting dense subgraphs from scratch with graph updates is time consuming and cannot meet the real-time requirement in industry. To address this problem, we introduce an incremental real-time fraud detection framework called Spade. Spade can detect fraudulent communities in hundreds of microseconds on million-scale graphs by incrementally maintaining dense subgraphs. Furthermore, Spade supports batch updates and edge grouping to reduce response latency. Lastly, Spade provides simple but expressive APIs for the design of evolving fraud detection semantics. Developers plug their customized suspiciousness functions into Spade which incrementalizes their semantics without recasting their algorithms. Extensive experiments show that Spade detects fraudulent communities in real time on million-scale graphs. Peeling algorithms incrementalized by Spade are up to a million times faster than the static version.