论文标题
非线性控制系统的Koopman双线化
Koopman Bilinearization of Nonlinear Control Systems
论文作者
论文摘要
自1931年,由法国出生的美国数学家伯纳德·库普曼(Bernard Koopman)引入的库普曼经营者(Koopman Operators)已被用作在各种科学领域的研究,例如ergodic理论,概率理论,几何学和拓扑。当前使用Koopman操作员的使用主要集中在沿阵贡动力学系统的光谱特性的表征上。在本文中,我们从不强制的动态系统向前发展,以控制系统并建立系统的Koopman控制框架。具体而言,我们严格地得出了一个差分方程系统,该系统管理与控制系统相关的Koopman操作员的动态,并表明所得系统是在无限二维谎言组上演变的双线性系统,该系统直接导致控制效果系统的全球双线化。然后,通过将几何控制理论中的技术与无限维差异几何形状整合在一起,这进一步为可控性分析提供了两倍的好处:根据DE RHAM差异操作员的控制 - 控制膜系统的可控性和扩展为无限型二维系统。为了证明适用性,我们进一步采用既定框架来开发Koopman反馈线性化技术,作为优势之一,它放弃了通过使用经典反馈线性化技术线性化系统的可控性要求。此外,值得一提的是,这项工作的一个独特特征是Koopman操作员的内在代数和几何特性的最大利用,而不是光谱方法以及系统的真人性假设,这进一步证明了我们工作的重要优势,以及对Koopman运营商的研究和现有研究之间的实质性差异。
Koopman operators, since introduced by the French-born American mathematician Bernard Koopman in 1931, have been employed as a powerful tool for research in various scientific domains, such as ergodic theory, probability theory, geometry, and topology. The current use of Koopman operators mainly focuses on the characterization of spectral properties of ergodic dynamical systems. In this paper, we step forward from unforced dynamical systems to control systems and establish a systematic Koopman control framework. Specifically, we rigorously derive a differential equation system governing the dynamics of the Koopman operator associated with a control system, and show that the resulting system is a bilinear system evolving on an infinite-dimensional Lie group, which directly leads to a global bilinearization of control-affine systems. Then, by integrating techniques in geometric control theory with infinite-dimensional differential geometry, this further offers a two-fold benefit to controllability analysis: the characterization of controllability for control-affine systems in terms of de Rham differential operators and the extension of the Lie algebra rank condition to infinite-dimensional systems. To demonstrate the applicability, we further adopt the established framework to develop the Koopman feedback linearization technique, which, as one of the advantages, waives the controllability requirement for the systems to be linearized by using the classical feedback linearization technique. In addition, it is worth mentioning that a distinctive feature of this work is the maximum utilization of the intrinsic algebraic and geometric properties of Koopman operators, instead of spectral methods and the ergodicity assumption of systems, which further demonstrate a significant advantage of our work and a substantial difference between the presented and existing research into Koopman operators.