论文标题
活性聚合物转移到圆形腔
Translocation of an Active Polymer into a Circular Cavity
论文作者
论文摘要
通过使用langevin Dynamics(LD)模拟,研究了通过纳米孔通过纳米孔通过纳米孔进入刚性二维圆形腔的易位动力学。结果表明,对于小腔半径的制度,力指数$β$,即$ r \ ll r _ {\ textrm {g}} $,其中$ r _ {\ r _ {\ textrm {g}} $是源在两个diopemers $ $的$β的gyyration gyration,n是两个$β的gyyration,n是$β r _ {\ textrm {g}} $强制指数的渐近值为$β\ oby obβ\约-0.92 $。力指数由平均转运时间$ \ langleτ\ rangle \ propto f _ {\ textrm {sp}}^β$的缩放形式定义,其中$ f _ {\ textrm {sp}} $是自我推销力量。此外,使用腔体内聚合物的转弯数的定义,已经发现,在易位过程结束时,小额值为$ r $,在强力限制的情况下,聚合物配置比$ r $的值更常规,因为$ r $的值很大或力量较大。
Translocation dynamics of an active semi-flexible polymer through a nano-pore into a rigid two dimensional circular cavity, and the polymer packing dynamics have been studied by using Langevin dynamics (LD) simulations. The results show that the force exponent $β$, for regime of small cavity radius, i.e. $R \ll R_{\textrm{g}}$, where $R_{\textrm{g}}$ is the gyration radius of the passive semi-flexible polymer in two dimensional free space, is $β=-1$, while for large values of $R \gg R_{\textrm{g}}$ the asymptotic value of the force exponent is $β\approx -0.92$. The force exponent is defined by the scaling form of the average translocation time $\langle τ\rangle \propto F_{\textrm{sp}}^β$, where $F_{\textrm{sp}}$ is the self-propelling force. Moreover, using the definition of the turning number for the polymer inside the cavity, it has been found that at the end of translocation process for small value of $R$ and in the strong force limit the polymer configuration is more regular than the case in which the value of $R$ is large or the force is weak.