论文标题
在带电的无旋点粒子上,在非交换平面中最小耦合到恒定磁场
On a charged spinless point particle minimally coupled to a constant magnetic field in a noncommutative plane
论文作者
论文摘要
在本文中,我们在数学上和物理上提供了一个最小的处方,用于在二维非公平平面中耦合到恒定磁场的带电的无旋点粒子。事实证明,与在非交通平面的二维量子力学的背景下,相比之下,与广泛使用的天真最小的处方相比,它是规范的处方。此外,我们通过明确计算Seiberg-witten地图的1参数家族来探索基础非交通系统的非交通性U(1)理论结构。
In this paper, we provide a mathematically and physically consistent minimal prescription for a charged spinless point particle coupled to a constant magnetic field in a 2-dimensional noncommutative plane. It turns out to be a gauge invariant prescription in contrast to the widely and carelessly used naive minimal prescription in the context of 2-dimensional quantum mechanics in a noncommutative plane. Besides, we explore the noncommutative U(1) gauge theoretic structure of the underlying noncommutative system by explicitly computing the 1-parameter family of Seiberg-Witten maps.