论文标题
非峰图的非理性旋转动力学
Irrational rotation dynamics for unimodal maps
论文作者
论文摘要
本文的第一个结果(定理1.1)是在临界后集合的半偶联图的明确构造,通过(3/5,2/3)$在临界后集的半缀合物构造。我们的构建是米尔诺(Milnor)和lyubich [lm]对斐波那契单峰地图半偶联到圆旋转的构造的概括。在斐波那契图中概括了米尔诺和lyubich的定理,我们证明,我们单峰地图的临界后集合的hausdorff维度为$ 0 $,只要$θ$的持续分数的分解者是$θ$的分解者(theorem 1.2)的(theorem 1.2),或者在theorem 1.2的情况下,就足够了。
The first result of the paper (Theorem 1.1) is an explicit construction of unimodal maps that are semiconjugate, on the post-critical set, to the circle rotation by an arbitrary irrational angle $θ\in(3/5,2/3)$. Our construction is a generalization of the construction by Milnor and Lyubich [LM] of the Fibonacci unimodal maps semi-conjugate to the circle rotation by the golden ratio. Generalizing a theorem by Milnor and Lyubich for the Fibonacci map, we prove that the Hausdorff dimension of the post-critical set of our unimodal maps is $0$, provided the denominators of the continued fraction of $θ$ are bounded (Theorem 1.2) or, in the case of quadratic polynomials, have sufficiently slow growth (Theorem 1.3).