论文标题

具有非标准生长条件的奇异矫形功能

Singular orthotropic functionals with nonstandard growth conditions

论文作者

Bousquet, Pierre, Brasco, Lorenzo, Leone, Chiara

论文摘要

我们追求具有正交结构和非标准生长条件的模型凸功能的研究,这次着重于次级案例。我们证明,有限的本地最小化器是本地Lipschitz。不需要最高和最低增长率之间的比率。在尖锐的集成性假设下,在存在非自治的低阶项的情况下,结果也保持不变。最后,我们也证明了有限的本地最小化器的更高可不同性。

We pursue the study of a model convex functional with orthotropic structure and nonstandard growth conditions, this time focusing on the sub-quadratic case. We prove that bounded local minimizers are locally Lipschitz. No restriction on the ratio between the highest and the lowest growth rates are needed. The result holds also in presence of a non-autonomous lower order term, under sharp integrability assumptions. Finally, we prove higher differentiability of bounded local minimizers, as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源