论文标题
在库存移动预测中有效整合多阶动力学和内部动力学
Efficient Integration of Multi-Order Dynamics and Internal Dynamics in Stock Movement Prediction
论文作者
论文摘要
深度神经网络(DNN)体系结构的进步已实现了股票市场数据的新预测技术。与其他多元时间表数据不同,股票市场显示了两个独特的特征:(i)\ emph {多阶动力},因为股票价格受到强大的非生产相关性的影响(例如,在同一行业内); (ii)\ emph {内部动力学},因为每个股票都显示出某些特定的行为。最近的基于DNN的方法使用超图捕获多阶动力学,但依赖于卷积中的傅立叶基础,这既效率低下又无效。此外,他们在很大程度上通过为每种股票采用相同的模型来忽略内部动力学,这意味着严重的信息损失。 在本文中,我们提出了一个用于克服上述问题的股票运动预测框架。具体而言,该框架包括时间生成过滤器,这些过滤器将基于内存的机制实现在LSTM网络上,以尝试学习每个股票的单个模式。此外,我们采用了超图的注意来捕获非对方的相关性。在这里,使用小波基础而不是傅立叶基础,使我们能够简化消息传递并专注于本地化卷积。在六年中,使用美国市场数据进行的实验表明,在利润和稳定方面,我们的框架优于最先进的方法。我们的源代码和数据可在\ url {https://github.com/thanhtrunghuynh93/estimate}中获得。
Advances in deep neural network (DNN) architectures have enabled new prediction techniques for stock market data. Unlike other multivariate time-series data, stock markets show two unique characteristics: (i) \emph{multi-order dynamics}, as stock prices are affected by strong non-pairwise correlations (e.g., within the same industry); and (ii) \emph{internal dynamics}, as each individual stock shows some particular behaviour. Recent DNN-based methods capture multi-order dynamics using hypergraphs, but rely on the Fourier basis in the convolution, which is both inefficient and ineffective. In addition, they largely ignore internal dynamics by adopting the same model for each stock, which implies a severe information loss. In this paper, we propose a framework for stock movement prediction to overcome the above issues. Specifically, the framework includes temporal generative filters that implement a memory-based mechanism onto an LSTM network in an attempt to learn individual patterns per stock. Moreover, we employ hypergraph attentions to capture the non-pairwise correlations. Here, using the wavelet basis instead of the Fourier basis, enables us to simplify the message passing and focus on the localized convolution. Experiments with US market data over six years show that our framework outperforms state-of-the-art methods in terms of profit and stability. Our source code and data are available at \url{https://github.com/thanhtrunghuynh93/estimate}.