论文标题

添加剂协方差矩阵模型:在英国建模区域电力净需求

Additive Covariance Matrix Models: Modelling Regional Electricity Net-Demand in Great Britain

论文作者

Gioia, V., Fasiolo, M., Browell, J., Bellio, R.

论文摘要

对区域电力净需求的预测,消费减去嵌入式生成,是可靠和经济电力系统运营和能源交易的重要意见。尽管这些预测通常是按地区进行的,但诸如管理功率流等操作需要空间连贯的关节预测,这是跨区域依赖性的。在这里,我们预测了构成英国电力网络的14个地区的净需求分配。联合建模使每个区域内的净点数变异性以及区域之间的依赖性随时间,社会经济和与天气相关的因素而异。我们通过基于修改的Cholesky参数化提出多元高斯模型来适应这些特征,该模型使我们能够通过添加剂模型对每个不受限制的参数建模。鉴于模型参数和协变量的数量很大,我们基于梯度提升采用了半自动化方法来选择模型选择。除了将所提出模型的几种版本的预测性能与两个非高斯基于基于副群体的模型的预测性能进行比较之外,我们还视觉上探索了模型输出,以解释协变量如何影响净需求的变异性和依赖关系。 在本文中复制结果的代码可在https://doi.org/10.5281/zenodo.7315105上获得,而构建和拟合多变量高斯添加剂模型的方法由SCM R包提供,可在https://github.com.com.com.com/vingioiaia90/scm提供。

Forecasts of regional electricity net-demand, consumption minus embedded generation, are an essential input for reliable and economic power system operation, and energy trading. While such forecasts are typically performed region by region, operations such as managing power flows require spatially coherent joint forecasts, which account for cross-regional dependencies. Here, we forecast the joint distribution of net-demand across the 14 regions constituting Great Britain's electricity network. Joint modelling is complicated by the fact that the net-demand variability within each region, and the dependencies between regions, vary with temporal, socio-economical and weather-related factors. We accommodate for these characteristics by proposing a multivariate Gaussian model based on a modified Cholesky parametrisation, which allows us to model each unconstrained parameter via an additive model. Given that the number of model parameters and covariates is large, we adopt a semi-automated approach to model selection, based on gradient boosting. In addition to comparing the forecasting performance of several versions of the proposed model with that of two non-Gaussian copula-based models, we visually explore the model output to interpret how the covariates affect net-demand variability and dependencies. The code for reproducing the results in this paper is available at https://doi.org/10.5281/zenodo.7315105, while methods for building and fitting multivariate Gaussian additive models are provided by the SCM R package, available at https://github.com/VinGioia90/SCM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源