论文标题
及其应用程序的稳健最佳性和二元性用于复合不确定的多目标优化及其应用
Robust optimality and duality for composite uncertain multiobjective optimization in Asplund spaces with its applications
论文作者
论文摘要
本文专门研究了在任意的asplund空间上,研究不确定的多个多目标优化问题(简短的杯子)。我们采用一些高级分析和广义分化技术,为限制子差异的弱点(杯)建立了必要的最佳条件(杯)。在复合函数的新概念概念下,还驱动了(弱)(弱)(弱)强大有效解决方案的足够条件。我们为原始问题(CUP)提出了一个较大的双重问题,并探索弱,强和匡威的二元性能。另外,获得的结果将应用于近似不确定的多目标问题,以及线性操作员的复合不确定的多目标问题。
This article is devoted to investigate a nonsmooth/nonconvex uncertain multiobjective optimization problem with composition fields (CUP) for brevity) over arbitrary Asplund spaces. Employing some advanced techniques of variational analysis and generalized differentiation, we establish necessary optimality conditions for weakly robust efficient solutions of (CUP) in terms of the limiting subdifferential. Sufficient conditions for the existence of (weakly) robust efficient solutions to such a problem are also driven under the new concept of pseudo-quasi convexity for composite functions. We formulate a Mond-Weir-type robust dual problem to the primal problem (CUP), and explore weak, strong, and converse duality properties. In addition, the obtained results are applied to an approximate uncertain multiobjective problem and a composite uncertain multiobjective problem with linear operators.