论文标题
通过数据流引擎合成的高度优化的量子电路
Highly optimized quantum circuits synthesized via data-flow engines
论文作者
论文摘要
量子程序以最少的门操作的形式提出的量子程序对于从如今可以访问的嘈杂量子处理器中检索有意义的结果至关重要。在这项工作中,我们演示了一个用于现场可编程门阵列(FPGA)基于数据流动发动机(DFE)的用例,以扩大变量量子的编译器,以合成高达$ 9 $ QUBIT的电路,以$ 9 $ QUBITS的程序。此GATE Decomposer在该型号Decomposer上使用新近开发的DFE量子模拟器,该量子量量且型号旋转是在单身量子上旋转的,该量子量旋转是单个量子的旋转,该量子量旋转了量子, FPGA芯片。在使用Qiskit套件的基准测试中,浪费套件产生的电路深度(带有DFE加速器支撑)的平均价格降低了$ 97 \%$ $,而电路的忠诚度仍然接近Unity,最多可达$ \ sim10^{ - 4} $。
The formulation of quantum programs in terms of the fewest number of gate operations is crucial to retrieve meaningful results from the noisy quantum processors accessible these days. In this work, we demonstrate a use-case for Field Programmable Gate Array (FPGA) based data-flow engines (DFEs) to scale up variational quantum compilers to synthesize circuits up to $9$-qubit programs.This gate decomposer utilizes a newly developed DFE quantum computer simulator that is designed to simulate arbitrary quantum circuit consisting of single qubit rotations and controlled two-qubit gates on FPGA chips. In our benchmark with the QISKIT package, the depth of the circuits produced by the SQUANDER package (with the DFE accelerator support) were less by $97\%$ on average, while the fidelity of the circuits was still close to unity up to an error of $\sim10^{-4}$.